The ultimate tumour Terminator

13th February 2018
Posted By : Enaie Azambuja
The ultimate tumour Terminator

 

In a major advancement in nanomedicine, Arizona State University scientists, in collaboration with researchers from the National Center for Nanoscience and Technology (NCNST) of the Chinese Academy of Sciences, have successfully programmed nanorobots to shrink tumours by cutting off their blood supply.

“We have developed the first fully autonomous, DNA robotic system for a very precise drug design and targeted cancer therapy,” said Hao Yan, director of the ASU Biodesign Institute’s Center for Molecular Design and Biomimetics and the Milton Glick Professor in the School of Molecular Sciences.

“Moreover, this technology is a strategy that can be used for many types of cancer, since all solid tumour-feeding blood vessels are essentially the same,” Yan said.

The successful demonstration of the technology, the first-of-its-kind study in mammals utilising breast-cancer, melanoma, ovarian and lung-cancer mouse models, was published in the journal Nature Biotechnology.

Yan is an expert in the field of DNA origami, which in the past two decades has developed atomic-scale manufacturing to build more and more complex structures.

The bricks to build their structures come from DNA, which can self-fold into all sorts of shapes and sizes — all at a scale 1,000 times smaller than the width of a human hair — in the hopes of one day revolutionising computing, electronics and medicine. That one day may be coming a bit faster than anticipated.

Nanomedicine is a new branch of medicine that seeks to combine the promise of nanotechnology to open up entirely new avenues for treatments, such as making minuscule, molecule-sized nanoparticles to diagnose and treat difficult diseases, especially cancer.

Until now, the challenge of advancing nanomedicine has been difficult because scientists wanted to design, build and carefully control nanorobots to actively seek and destroy cancerous tumours — while not harming any healthy cells.

The international team of researchers overcame this problem by using a seemingly simple strategy to very selectively seek and starve out a tumour.

This work was initiated about five years ago. The NCNST researchers first wanted to specifically cut off tumour blood supply by inducing blood coagulation with high therapeutic efficacy and safety profiles in multiple solid tumours using DNA-based nanocarriers.

Yan’s expertise has upgraded the nanomedicine design to be a fully programmable robotic system, able to perform its mission entirely on its own.

“These nanorobots can be programmed to transport molecular payloads and cause on-site tumour blood-supply blockages, which can lead to tissue death and shrink the tumour,” said Baoquan Ding, a professor at the NCNST in Beijing.

To perform their study, the scientists took advantage of a well-known mouse tumour model, where human cancer cells are injected into a mouse to induce aggressive tumour growth. Once the tumour was growing, the nanorobots were deployed to come to the rescue.

Each nanorobot is made from a flat, rectangular DNA origami sheet, 90 nanometers by 60 nanometers in size. A key blood-clotting enzyme, called thrombin, is attached to the surface. Thrombin can block tumour blood flow by clotting the blood within the vessels that feed tumour growth, causing a sort of tumour mini heart attack and leading to tumour tissue death.

First, an average of four thrombin molecules was attached to a flat DNA scaffold. Next, the flat sheet was folded in on itself like a sheet of paper into a circle to make a hollow tube. They were injected with an IV into a mouse, then traveled through the bloodstream, homing in on the tumours.

The key to programming a nanorobot that attacks only a cancer cell was to include a special payload on its surface, called a DNA aptamer. The DNA aptamer could specifically target a protein, called nucleolin, that is made in high amounts only on the surface of tumour endothelial cells — and not found on the surface of healthy cells.

The treatment blocked tumour blood supply and generated tumour tissue damage within 24 hours while having no effect on healthy tissues. Once bound to the tumour blood vessel surface, the nanorobot was programmed, like the notorious Trojan horse, to deliver its unsuspecting drug cargo into the very heart of the tumour, exposing the thrombin.

The nanorobots worked fast, congregating in large numbers to quickly surround the tumour just hours after injection.


Discover more here.

Image credit: Arizona State University.


You must be logged in to comment

Write a comment

No comments




Sign up to view our publications

Sign up

Sign up to view our downloads

Sign up

Med-Tech Innovation Expo 2018
25th April 2018
United Kingdom Ricoh Arena, Coventry