How 3D printers could improve access to technology

Posted By : Enaie Azambuja
How 3D printers could improve access to technology

3D printers can make just about anything these days, from a pair of running shoes to chocolate, wood, and aircraft parts. And it turns out — even complex scientific gadgets used in cancer research. Cost-efficient tools are essential in life sciences research to understand how cancer cells migrate from one place to another during metastasis, to probe how neurons connect in networks during human development, and to watch how white blood cells respond to infections.

At NYU Abu Dhabi, biomedical engineers are designing new technologies biologists need to make important discoveries in these areas.

One such device is called a microfluidic probe, or MFP, as it's called in the lab. Typically made of glass or silicon, these very tiny scientific tools — roughly the size of a pen tip — were invented about a decade ago and are continuously being developed and refined.

MFPs are used by scientists around the world to study, process, and manipulate live cell cultures in a controlled environment.

Although the technology is well established, it poses unique challenges and limitations. Specifically, MFPs cannot be easily produced on demand due to their complex fabrication procedures, and are expensive to make in large quantities because of their assembly procedures.

'Democratising' science technology

Biomedical engineers at NYUAD used a 3D printer to create a functional, integrated, and inexpensive MFP to study cancer cells and other living organisms in a Petri dish. Their printed device is cube-shaped with a cylinder tip and works with the same efficiency as its more expensive and laborious cousin.

“3D printers provide a simple, rapid, and low-cost technique for fabricating MFPs,” said Assistant Professor of Mechanical and Biomedical Engineering Mohammad Qasaimeh, whose team developed a framework to print microfluidic probes and quadrupoles in 3D.

“It’s cheaper to produce, easy to scale up or down, and fast to fabricate — all steps, from design to product, can be made in less than a day,” he explained, and as a result, “any science lab with a moderate resolution stereolithography printer will be able to fabricate 3D MFPs on demand and use them to process cells reliably.”


You must be logged in to comment

Write a comment

No comments

More from New York University Abu Dhabi

Sign up to view our publications

Sign up

Sign up to view our downloads

Sign up

HETT 2019
1st October 2019
United Kingdom EXCEL, London
New Scientist Live 2019
10th October 2019
United Kingdom ExCeL, London
GIANT Health Event 2019
15th October 2019
United Kingdom Chelsea Football Club Stadium, London