First responders to bacterial invasion identified

23rd October 2017
Source: KU Leuven
Posted By : Enaie Azambuja
First responders to bacterial invasion identified

When bacteria enter our body, they kick-start a powerful immune response. But this chain of reactions doesn't fully account for our immediate responses. KU Leuven researchers show that so-called ion channels play a key role as ‘first responders’. When we get a bacterial lung infection, the cells lining our airways are the first line of defence. These cells recognise the lipopolysaccharide molecules typically found on many bacteria, including the ones causing pneumonia.

This gives immune cells the signal to start attacking the invading bacteria. But powerful though this immune response may be, it's relatively slow and doesn't fully account for many of our body's immediate reactions, including inflammation and fever.

Researchers from the KU Leuven Department of Cellular and Molecular Medicine have now identified a rapid response mechanism against bacterial airway infections. The team led by Professor Karel Talavera Pérez and Dr Yeranddy Aguiar Alpizar found that the lipopolysaccharides also activate specific ion channels in the cells lining our airways.

Our body's strategy to fight off bacterial infections is not limited to previously identified immune pathways. Ion channels are selective gates through which charged atoms enter and leave the cell. In the case of lung infections, the activated ion channels open to let calcium flow in. This, in turn, triggers a wide range of antibacterial responses in a matter of minutes.

"Our study shows that our body's strategy to fight off bacterial infections is not limited to previously identified immune pathways,” Professor Talavera explains. “So-called TRPV4 ion channels play a role as well: they are essential to our body’s earliest defence mechanism against bacterial invasion. If we want to develop more effective treatments, these ion channels are well worth investigating in greater detail.”

In previous studies, the KU Leuven researchers already linked ion channel activation by bacteria to the sensation of pain in mice and to how fruit flies detect the bitter substances in contaminated food.

You must be logged in to comment

Write a comment

No comments

Sign up to view our publications

Sign up

Sign up to view our downloads

Sign up

28th August 2018
Switzerland BERNEXPO-Site, Bern
European Microwave Week 2018
23rd September 2018
Spain Ifema Feria De Madrid
Connected World Summit 2018
25th September 2018
United Kingdom Printworks, London
IoT Solutions World Congress 2018
16th October 2018
Spain Barcelona
Engineering Design Show 2018
17th October 2018
United Kingdom Ricoh Arena, Coventry