Tailor-made microreactor designed for chemical synthesis

16th January 2018
Source: Anton Paar
Posted By : Lanna Cooper
Tailor-made microreactor designed for chemical synthesis

Specialists at Anton Paar have 'printed' a micro-flow-reactor that could simplify the chemical synthesis dramatically. The device is made of steel via direct laser metal sintering and was developed within an international research project called 'CC Flow'. The project is the starting point for tailor-made microreactors from Anton Paar.

The pharmaceutical industry consistently reports high company revenues. This is due to highly valuable products called APIs (Active Pharmaceutical Ingredients) that extend our lives and result in high turnover for the pharmaceutical companies. APIs are either produced biotechnologically using huge fermenters with thousands of liters in volume or made by organic synthesis.

“In order to speed up these costly processes and increase the safety (for example, to avoid the risk of an explosion that is often connected to organic synthesis), researchers and manufacturers started considering continuous technologies in small reactors with small volumes and a high throughput,” said Günter Köle, Head of the Department for Analytical and Synthetic Chemistry at Anton Paar.

Within the research project 'CC Flow' and together with pharmaceutical companies like Janssen, Patheon, Astra Zeneca, and Lonza, the specialists at Anton Paar have printed such a microreactor.

“We developed just three prototypes until we knew the final design and the perfect internal and external dimensions,” explained Stefan Pfanner, specialist for additive manufacturing and direct metal laser sintering at the Austrian technology company.

The technology was used to produce the microreactor following the research and simulation by Prof. Oliver Kappe and his team from the University of Graz.

A reactor out of a printer
The reactor itself is made from stainless steel (316L powder), is just a little bit smaller than an A5/B5 sheet (exactly 164x93mm), and about 3cm thick. It consists of a serpentine cooling core surrounded by the reaction channels with an inner diameter of 0.8mm and a total length of four meters, with four inlets, two defined reaction zones, and one outlet.

This reactor was exactly designed for one synthesis: the difluoromethylation of a lithiated nitrile with fluoroform as a major component. Fluoroform is a known greenhouse gas and a byproduct of the synthesis of Teflon (known from coatings and high performance fibres like Gore-Tex). “ Stainless steel was the ideal material considering the required chemical, mechanical, and thermal stability, and the thermal conductivity that was needed for this kind of organic reaction," explained Stefan Pfanner.

The reactor design enables the conversion of a batch reaction into a scalable, fast, and continuous process. “By connecting several microreactors, the product yield can easily be multiplied,” reported Günter Köle, who plans to develop various tailor-made reactor types for different industrial requirements.

It is likely that additive and digital manufacturing technologies, in combination with computational simulation, will play a fundamental role in designing the next-gen, continuous flow microreactor systems. Since the project has recently been published by the Royal Society of Chemistry, industrial interest has already popped up.


You must be logged in to comment

Write a comment

No comments




More from Anton Paar

Sign up to view our publications

Sign up

Sign up to view our downloads

Sign up

IoT Solutions World Congress 2018
16th October 2018
Spain Barcelona
Engineering Design Show 2018
17th October 2018
United Kingdom Ricoh Arena, Coventry
Maintec 2018
6th November 2018
United Kingdom NEC, Birmingham
electronica 2018
13th November 2018
Germany Messe Munchen
SPS IPC Drives 2018
27th November 2018
Germany Nuremberg