Nanoscale X-ray sensor improves imaging and radiotherapy

3rd April 2017
Posted By : Enaie Azambuja
Nanoscale X-ray sensor improves imaging and radiotherapy

Using a tiny device known as an optical antenna, researchers have created an X-ray sensor that is integrated onto the end of an optical fibre just a few tens of microns in diameter. By detecting X-rays at an extremely small spatial scale, the sensor could be combined with X-ray delivering technologies to enable high-precision medical imaging and therapeutic applications.

“We want to develop this technology so that it could be used in radiotherapy, for example,” said Thierry Grosjean, from FEMTO-ST Institute, CNRS, in France. “Specifically, the sensor could allow a real-time measurement of how much radiation is being delivered to a tumor via endoscopy.”

In The Optical Society (OSA) journal Optics Letters, the researchers demonstrate their new X-ray sensor using low energy X-rays. They say that the same principle should work with the high-energy X-rays used for medical applications such as imaging and radiotherapy.

Like many of today’s X-ray applications, the new X-ray sensor uses indirect detection. Rather than directly sensing X-rays, this method uses a special detector called a scintillator, which absorbs the X-rays and then emits light that is detected by an optical camera.

Achieving indirect X-ray detection on a small scale is challenging because scintillators emit photons in all directions. Scaling scintillators down to a very small size means that they will emit very few photons, making it almost impossible for the camera to catch enough photons at just the right angle. The researchers turned to optical antennas to help with this challenge.

Because optical antennas have been used to control the light emission from fluorescing molecules, the researchers thought they might also control light emitted by scintillators. “An optical antenna works much like a radio frequency antenna, offering a way to interconnect an emitter with free-space,” said Grosjean. “We demonstrated that they can be used to control the directionality of the emission from scintillators.”

To make the X-ray sensor, the researchers used an optical antenna to connect a single mode optical fibre with a tiny cluster of scintillators. They fabricated the optical antenna, just a few microns wide, onto the end of the fibre and grafted the scintillator cluster at its extremity.

Light emitted from the scintillators hits the antenna and is directed into the fibre, where it travels to a remote optical detector. This setup keeps the electronics away from the X-rays, which protects electronics from damage after repeated use.

Although the X-ray sensor fabrication required a clean room facility, the researchers said it was not a difficult or expensive process. They are currently working on procedures that might make it even easier to graft the scintillators onto the fibre antenna.

From their experiments, the researchers estimated that the sensor has a spatial resolution on the order of 1 micron, which they are working to increase to about 100 nanometers. This improved resolution would allow the device to distinguish chemical components in composite materials by using the fibre tip to conduct low-energy X-ray scanning microscopy.

In addition to expanding the technology to work with the high-energy X-rays required for medical applications, the researchers are also investigating whether optical antennas could enable faster X-ray detectors.

Since the devices have been shown to shorten the time between light absorption and light emission in fluorescence processes, the antennas might also shorten the time between X-ray absorption and light emission within scintillators – thus creating a faster way to detect X-rays.


You must be logged in to comment

Write a comment

No comments




Sign up to view our publications

Sign up

Sign up to view our downloads

Sign up

PPMA Show 2017
26th September 2017
United Kingdom NEC, Birmingham
World’s top 50 innovators from the industries of the future
27th September 2017
United Kingdom London
New Scientist Live 2017
28th September 2017
United Kingdom Excel, London
Kiosk Summit 2017
28th September 2017
United Kingdom London
act! 2017
28th September 2017
Germany NHOW Berlin